Environmental Engineering and Management Journal

March 2012, Vol.11, No. 3, Supplement, S63 http://omicron.ch.tuiasi.ro/EEMJ/

P62

"Gheorghe Asachi" Technical University of lasi, Romania

BATCH TESTS OF BIOLOGICAL HYDROGEN PRODUCTION FROM FOOD INDUSTRY WASTES BY FOUR THERMOTOGA THERMOPHILIC STRAINS IN 0.12-L MICROCOSMS AND IN A 19-L FERMENTOR

A. Alberini^{*1}, S. J.Mendes¹, G. Bucchi¹, C. Manfreda², M. Cappelletti², D. Pinelli¹, S.Fedi², F. Fava³, D. Frascari¹

¹Department of Chemical, Mining and Environmental Engineering, University of Bologna, Via Terracini 28, Bologna, Italy; ²Department of Biology, University of Bologna, Via Irnerio 42, Bologna, Italy; ³Department of Civil, Environmental and Material Engineering, University of Bologna, Via Terracini 28, Bologna, Italy

Abstract

This work is aimed at evaluating the feasibility of a cost-effective process of biological H₂ production from food industry wastes under thermophilic conditions. The H₂-producing performances of 4 Thermotoga strains (T. neapolitana, T. petrophila, T. naphtophila, T. maritima) were compared at 77 °C by means of tests conducted in 120-mL batch bioreactors containing a nutrient-rich growth medium additioned with glucose, molasses or cheese whey as carbon source. For all the substrates tested, T. neapolitana resulted the best-performing strain under suspended-cell conditions, with a 0.9-1.9 mmol L_{medium}⁻¹ h⁻¹ H₂ production rate at an 8-10 g L^{-1} initial substrate concentration, and a 1.6-2.6 mmol_{H2} mmol_{monosaccharide consumed}⁻¹ yield. To compare the 4 strains also under attached-growth conditions, preliminary tests were conducted with glucose-growing T. neapolitana, with the goal to select the best biomass carrier among 4 porous materials utilized in biofiltration applications. The best results were obtained with the carrier characterized by the highest interfacial area, equal to 2.1 m² g⁻¹. Also under attached-growth conditions, *T. neapolitana* resulted the best strain for all the 3 substrates tested, with a 1.2-1.8 mmol L_{medium}^{-1} h⁻¹ H₂ specific production rate. Further tests, aimed at simplifying the growth medium composition, led to encouraging results. For example, in the case of molasses a minimum medium composed only by NH₄Cl, K₂HPO₄, NaCl, buffer and cysteine resulted – in comparison with the ATCC 1977 complete medium - in a 73% reduction of medium cost and in a 12% increase of the H2/substrate yield. Finally, the process scale-up to a 19-L reactor is in progress. The preliminary results indicate that, in the scale-up of batch H₂ production from glucose by T. neapolitana, the values of the three monitored yields (H₂/substrate, organic acids/substrate, biomass/substrate) did not show significant variations, whereas the H₂ volumetric production and the initial H₂ production rate resulted to be significantly affected by the concentration of the initial inoculum.

Acknowledgements

Project financing by the Italian Ministry of Agriculture, Food and Forestry (MIPAAF) under grant "Combined production of hydrogen and methane from agricultural and zootechnical wastes through biological processes (BIO-HYDRO)" is acknowledged.