Environmental Engineering and Management Journal

March 2012, Vol.11, No. 3, Supplement, S68 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of lasi, Romania

VANILLIN PRODUCTION FROM WHEAT BRAN WITH Pseudomonas fluorescens BF13-1P

Elena Dal Bello¹, Stefano Rebecchi¹, Andrea Negroni¹, Giulio Zanaroli¹, Diana Di Gioia², Maurizio Ruzzi³, Fabio Fava¹

¹Dept. of Civil, Environmental and Materials Engineering, University of Bologna, Bologna, Italy; ²Dept. of Agroenvironmental Sciences and Technologies, University of Bologna, Bologna, Italy; ³Dept. for Innovation in Biological Agro-food and Forest systems, Tuscia University, Viterbo, Italy

Abstract

P74

Relevant amounts of wheat bran are produced by the Mediterranean Countries, where they are mainly employed in the formulation of animal feeds but also extensively discharged as a waste. Wheat bran contains relevant amounts (5-6 % w/w) of ferulic acid, i.e., a precursor for microbial vanillin production, which can be partially released from the cell wall polysaccharides via selected enzymatic treatments. We recently optimized a batch process for the bioconversion of food-grade ferulic acid into vanillin with resting cells of *Pseudomonas fluorescens* BF13-1p. In this work we investigated the possibility of i) increasing vanillin concentration in a fed-batch process, ii) using the biomass for consecutive bioconversion steps and iii) using ferulic acid from wheat bran hydrolysates as the bioconversion substrate.

P. fluorescens BF13-1p cells were grown in a 2-L stirred tank reactor on LB medium at 30°C, pH 6.8 and induced for 1 h with 2.5 mM ferulic acid after 4.30 h of growth. Batch bioconversion experiments were performed in shaken flasks (150 rpm, 30°C) with 6 g (wet weight)/L cells in saline phosphate buffer pH 7.0 or in wheat bran hydrolysate. Fed-batch bioconversions with repeated spikes of food-grade ferulic acid 2.5 mM and 5 mM allowed to obtain vanillin concentrations (3.5 mM and 6.4 mM, respectively) 20% lower than those obtained using the same total amount of ferulic acid in the batch process. Conversely, biomass could be efficiently reused in a second bioconversion process, allowing to obtain vanillin concentration, molar yields and bioconversion selectivity comparable those obtained after the first bioconversion (4.3 mM, 82.8% and 87.5%, respectively), while only 1.1 mM vanillin and 22% molar yield were obtained after the third use of biomass, due to the rapid accumulation of the by-products vanillic acid and vanillyl alcohol. Finally, bioconversion selectivity (15%) due to vanillin oxidation to vanillic acid. The process efficiency slightly improved when the hydrolyzate pH was maintained at 7.0, whereas vanillin production comparable to those obtained with food-grade ferulic was obtained when ferulic acid occurring in bran hydrolyzates was purified from sugars on ISOLUTE ENV⁺ columns.

Acknowledgements

This work was supported by the EC within the FP7 under Grant Agreement No. 245267 (NAMASTE project).