Environmental Engineering and Management Journal

March 2012, Vol.11, No. 3, Supplement, S133 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of lasi, Romania

TREATMENT OF A SHOPPING MALL WASTEWATER USING AN ATTACHED GROWTH ANOXIC-AEROBIC SYSTEM

Cleofas O. Maceda¹, Analiza P. Rollon²

¹Environmental Engineering Graduate Program, University of the Philippines Diliman, Head Corporate Environment & Pollution Control; ²Department of Chemical Engineering, University of the Philippines, Diliman

Abstract

P64

An integrated water quality management system involves both treatment of wastewater and appropriate reuse of the effluent. Treated wastewater from commercial establishments such as hotels, high-rise residential or office buildings and shopping malls are potential source of non-potable water for use as landscape watering and toilet flushing. This study aimed to determine the performance of a full-scale aerobic activated sludge system and a bench-scale attached growth anoxic-aerobic growth wastewater treatment system (WWTS) which operated at shorter HRT and higher organic loading rate (OLR) than the present full-scale system. The effect of HRT on the bench-scale performance was also determined. Furthermore, this study assessed the effluent water quality for possible reuse.

In the full-scale WWTS, at 2.06 ± 0.18 days HRT and 0.396 ± 0.123 kg COD/ OLR, the COD, BOD, FOG and TSS removal efficiency were $97.2\pm2.3\%$, $95.3\pm2.0\%$, $91.6\pm15.0\%$ and $85.96\pm13.4\%$, respectively.

In the bench-scale attached growth anaerobic-aerobic WWTS, the BOD, COD, FOG and TSS removal efficiency were $97.9\pm2.3\%$, $93.6\pm5.9\%$, $87.8\pm22.9\%$ and $71.4\pm18.5\%$, respectively, at 6.35 h HRT and 2.42 ± 0.40 kg COD/ OLR. The efficiencies were better at longer HRT and lower OLR. At 12.70 h HRT and 1.50 ± 0.30 kg COD/OLR, the BOD, COD, FOG and TSS removal efficiencies were $98.1\pm2.4\%$, $94.7\pm4.6\%$, $95.0\pm5.1\%$ and $91.4\pm2.4\%$, respectively. The effluent of the bench-scale WWTS after an additional tertiary treatment could be used for landscape watering and flushing toilet.