PHOTOELECTROCHEMICAL NADH REGENERATION FOR ENZYMATIC CO_{2} REDUCTION: INCREASING EFFICIENCY AT METAL-MODIFIED SEMICONDUCTORS

Paolo Stufano ${ }^{1}$, Zachary M. Detweiler ${ }^{2}$, Elizabeth L. Zeitler ${ }^{2}$, Angela Dibenedetto ${ }^{1}$, Andrew B. Bocarsly ${ }^{2}$, Michele Aresta ${ }^{1}$
${ }^{1}$ University of Bari, Bari, IT; ${ }^{2}$ Princeton University, Princeton, NJ, USA

Abstract

The mimicry of the photosynthetic process has inspired the enzymatic reduction of carbon dioxide into methanol through the dehydrogenase enzyme cascade: $F_{\text {ate }} D H, F_{\text {ald }} D H$ and $A D H$. Although, this process occurs under very mild conditions (water, $37^{\circ} \mathrm{C}, \mathrm{pH}=7$) and with optimal yield and selectivity (close to 100%), there still is a limitation associated with the consumption of the cofactor NADH. Although enzymatic, chemical and photo-chemical approaches have been attempted electrochemical regeneration is considered the most attractive solution. Herein we report the use of p-type semiconductor electrodes in order to utilize solar energy for photoelectrochemical NADH regeneration. While bare semiconductors were shown to produce only enzymatically inactive dimers $\left(\mathrm{NAD}_{2}\right)$, modification of the surface by electro-deposition of a thin layer of Pt or Ru metal caused the formation of $1,4-\mathrm{NADH}$ as the main product. In particular red-light illuminated ($>600 \mathrm{~nm}$) of Pt / p-GaAs showed an increased efficiency at low overpotentials $(-0.75 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl})$ when compared to metal electrodes (>7 fold), with no dimer detection. This study represents the first example of NADH regeneration at an illuminated semiconductor electrode. The absence of a mediator allows the direct coupling of this regeneration system with the enzymatic CO_{2} reduction apparatus, modeling the light and dark reactions occurring in a chloroplast.

