Environmental Engineering and Management Journal

March 2012, Vol.11, No. 3, Supplement, S137 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of lasi, Romania

CARBON DIOXIDE FROM ALCOHOLIC FERMENTATION AS A CARBON SOURCE FOR FED-BATCH CULTIVATION OF Arthrospira platensis

Raquel Pedrosa Bezerra^{1,2}, Marcelo Chuei Matsudo¹, Sunao Sato¹, Attilio Converti², João Carlos Monteiro de Carvalho¹

¹Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil; ²Department of Chemical and Process Engineering "G.B. Bonino", University of Genoa, Genoa, Italy

Abstract

World's production of ethanol has increased dramatically in recent years. Brazil is the world's largest exporter of bioethanol and second-largest producer after the United States. Considering the increasing demand for this fuel and the fact that alcoholic fermentation is responsible for a CO₂ release, on weight basis, almost coincident with ethanol production, it would be interesting to develop a process for CO₂ fixation able to turn it into a useful product. Photosynthetic microorganisms can fix CO₂ efficiently producing biomass that contains high-value bioactive products and may provide a very promising alternative for the current CO₂ mitigation strategies. Nowadays, there are numerous commercial applications of *Arthrospira platensis* biomass such as the enhancement of the nutritional value of foods and animal feed, bioremediation, and use in cosmetics. The objective of this work was to evaluate the *Arthrospira platensis* cultivation using CO₂ from alcoholic fermentation and either urea or nitrate as nitrogen source at different light intensities ($60 \le I \le 240 \mu$ mol photons m⁻² s⁻¹). The CO₂ source (pure CO₂ or from alcoholic fermentation) did not influence the maximum cell concentration (X_m), cell productivity (P_X) and nitrogen-to-cell conversion factor ($Y_{X/N}$). On the other hand, the use of urea instead of nitrate led to higher $Y_{X/N}$ values. X_m and P_X increased when I was increased from 60 to 120-240 µmol photons m⁻² s⁻¹. Using CO₂ from alcoholic fermentation, the best performance ($X_m=2952 \pm 35$ mg L⁻¹, $P_X=425\pm 5.9$ mg L⁻¹ d⁻¹ and $Y_{X/N}=15\pm 0.20$ mg mg⁻¹) was obtained at I = 120 µmol photons m⁻² s⁻¹ with urea. The results obtained in this work demonstrate that urea and CO₂ from alcoholic fermentation could be simultaneously used in large-scale cultivations to reduce the environmental impact associated to the release of this greenhouse gas as well as to decrease the production cost of this cyanobacterium.