Environmental Engineering and Management Journal

October 2014, Vol.13, No. 10, 2675-2686 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of lasi, Romania

REMOVAL OF CADMIUM (II) FROM AQUEOUS MEDIA USING COOH/TUD-1 MESOPOROUS SOLID. KINETIC AND THERMODYNAMIC STUDIES

Nabila Bensacia¹, Ioana Fechete^{1*}, Saâd Moulay², Saïda Debbih-Boustila¹, Anne Boos³, François Garin¹

¹Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR 7515 CNRS, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France ²Laboratoire de Chimie-Physique Moléculaire et Macromoléculaire, Département de Chimie Industrielle, Faculté de Technologie, Université Saâd Dahlab de Blida, B. P. 270, Route de Soumâa, 09000, Blida, Algérie ³Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France

Abstract

The adsorption potential of 10 wt.% COOH/TUD-1 material for removing Cd^{2+} from aqueous solutions was investigated via the batch technique, and the effects of pH, temperature and contact time were studied. Experimental data showed that the maximum Cd^{2+} adsorption, 90%, occurred at pH 6. The adsorption equilibrium was reached within 35 min for 10 wt.% COOH/TUD-1. The adsorption mechanism was investigated in terms of its thermodynamics and kinetics. The adsorption data were fitted using the Langmuir and Freundlich isotherms, and the obtained modeling equilibrium adsorption data suggested that the 10 wt.% COOH/TUD-1 sample contained homogeneous adsorption process. The positive values of both ΔH° and ΔS° suggest, respectively, an endothermic reaction and an increase in randomness at the solid-liquid interface during the adsorption of Cd^{2+} onto the COOH/TUD-1 adsorbents. And, ΔG° values obtained were all negative, indicating a spontaneous adsorption process. Desorption and regeneration experiments indicated that \approx 98% of the metals were desorbed. COOH/TUD-1 samples were characterized using N₂ adsorption-desorption isotherms, powder X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and Transmission electron microscopy (TEM).

Key words: adsorption, Cadmium, COOH/TUD-1, mesoporous sorbents

Received: February, 2014; Revised final: August, 2014; Accepted: August, 2014

^{*} Author to whom all correspondence should be addressed: e-mail: ifechete@unistra.fr; Phone: +33 (0)3 68852737; Fax: +33 (0)368852761