Environmental Engineering and Management Journal

April 2014, Vol.13, No. 4, 891-903 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of lasi, Romania

REMOVAL OF PHOSPHORUS BY ION-EXCHANGE RESINS: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDIES

Mansur Zarrabi¹, Mohammad Mahdi Soori², Mohammad Noori Sepehr¹, Abdeltif Amrane^{3,4*}, Saied Borji⁵, Hamid Reza Ghaffari⁶

¹Alborz University of Medical Sciences, Department of Environmental Health Engineering, Faculty of Health, Karaj, Iran
² Jiroft University of Medical Sciences, Department of Environmental Health Engineering, Faculty of Health, Jiroft, Iran
³Université Rennes 1, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
⁴Université Européenne de Bretagne, France
⁵Hamadan University of Medical Sciences, Department of Environmental Health Engineering and Research Center for Health Science, Faculty of Health, Hamadan, Iran
⁶ Hormozgan University of Medical Sciences, Department of Environmental Health Engineering, Faculty of Health,

Bandar Abbas, Iran

Abstract

The removal of phosphorus by strongly basic anion exchanger was investigated. Removal efficiency increased with contact time, resin mass and initial solute concentration, while temperature showed a reverse effect. Equilibrium data were best fitted onto Langmuir isotherm model (R^2 >0.99). Maximum sorption capacity of the resin was 66.22 mg/g, namely significantly higher the values reported in the literature. The Freundlich parameter (n = 4.3) and the Langmuir separation factor ($R_L = 0.067-0.028$) showed that the considered system obeyed to favorable sorption process. The high K_f Freundlich parameter value indicated a high affinity of phosphorus onto the adsorbent. The Temkin isotherm parameters showed high adsorption heat (b_J =327.83 kJ/mol) and high maximum bonding energy (k_r =1215.8 L/g). Experimental kinetic data was best described by pseudo-second order kinetic model. External mass transfer resistance increased at low initial phosphorus concentrations. Film diffusion was the rate-controlling step, instead of intraparticle diffusion. Thermodynamic experiments indicated that the considered system was exothermic and thermodynamically spontaneous.

Key words: adsorption, equilibrium study, kinetic study, phosphorus removal, thermodynamic study

Received: December, 2011; Revised final: June, 2012; Accepted: July, 2012

^{*} Author to whom all correspondence should be addressed: E-mail: abdeltif.amrane@univ-rennes1.fr; Phone: +33 2 23 23 81 55; Fax: +33 2 23 23 81 20