Environmental Engineering and Management Journal

September 2014, Vol.13, No. 9, 2159-2165 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of Iasi, Romania

ELECTROCHEMICAL DEGRADATION AND DETERMINATION OF PENTACHLOROPHENOL FROM WATER USING TIO₂-MODIFIED ZEOLITE-CARBON COMPOSITE ELECTRODES

Ágnes Jakab¹, Aniela Pop¹, Corina Orha², Florica Manea^{1*}, Rodica Pode¹

¹Politehnica University Timişoara, Faculty of Industrial Chemistry and Environmental Engineering, Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, V. Parvan no. 6, 300223, Timişoara, Romania ²National Institute for Research and Development in Electrochemistry and Condensed Matter, Timişoara, Condensed Matter Department, 1 P. Andronescu Street, 300254, Timişoara, Romania

Abstract

In this study, TiO_2 -zeolite modified carbon nanotubes-epoxy (TiO_2 -Z-CNT-Epoxy) and TiO_2 -zeolite modified carbon nanofibersepoxy (TiO_2 -Z-CNF-Epoxy) composite electrodes were applied for pentachlorophenol (PCP) degradation and determination in aqueous solution. The morpho-structural characterization of the composite electrodes was studied by scanning electron microscopy. The electrochemical behaviour of the electrodes was investigated under UV irradiation presence/absence, using cyclic voltammetry (CV) in 0.1 M sodium sulphate solution supporting electrolyte. The electrooxidation and photoelectrooxidation process under potentiostatic conditions were carried out using chronoamperometry (CA). A synergy effect at 1.5 V applied potential was observed for photoelectrochemical process in comparison with each electrochemical and photocatalytic one. The optimum operation conditions in relation with electrode type, and applied potential were established.

Key words: pentachlorophenol; photoelectrocatalytic activity; TiO₂-zeolite-modified nanostructured carbon composite electrodes; wastewater

Received: March, 2014; Revised final: August, 2014; Accepted: September, 2014

^{*} Author to whom all correspondence should be addressed: e-mail: florica.manea@chim.upt.ro; Phone:(+40)256403070; Fax: (+40)256403069;