Environmental Engineering and Management Journal

February 2015, Vol.14, No. 2, 373-379 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of lasi, Romania

SEPARATION OF AROMATIC INTERMEDIATES OF BIOLOGICAL INTEREST USING EMULSION LIQUID MEMBRANES

Alexandra Raluca Miron^{1*}, Aurelia Cristina Nechifor¹, Abbas Abdul Kadhim Klaif Rikabi^{1,2}, Szidonia Katalin Tanczos^{1,3}

¹Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, Departament of Analytical Chemistry and Environmental Engineering, 1-7 Polizu Str., Bucharest, Romania ²Al-Furat Al-Awsat University, Foundation of Technical Education, Technical College of Al-Mussaib(TCM), Baghdad, Iraq ³Sapientia University, Miercurea Ciuc, 1 Piata Libertatii, 530104 Harghita, Romania

Abstract

Established applications of emulsion liquid membranes (ELM) refer to refining in hydrocarbons and hydrometallurgical processing, rehabilitation of poisoned patients. In this work we investigated the separation of aromatic compounds of biological interest, more often encountered as intermediates in dyes and drugs industry: aniline, nitrobenzene, ortho and para-toluidine, using emulsion liquid membranes. The experimental results showed that in the case of basic substances separation the main physicochemical characteristics which have to be considered are alkalinity and water solubility. Thus, for the liquid emulsion membranes operation it is preferred to have a basicity as high as possible and a solubility as low as possible.

Key words: aromatic intermediates, biological interest compounds, liquid membranes, separation

Received: November, 2014; Revised final: February, 2015; Accepted: February, 2015

^{*} Author to whom all correspondence should be addressed: e-mail: andra3005@yahoo.com