Environmental Engineering and Management Journal

February 2015, Vol.14, No. 2, 473-480 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of Iasi, Romania

PORE STRUCTURE CHARACTERIZATION OF CHEMICALLY MODIFIED BIOCHAR DERIVED FROM RICE STRAW

Sobhy M. Yakout^{1,2*}, Abd El Hakim M. Daifullah², Sohair A. El-Reefy²

¹King Saud University, College of Science, Biochemistry Department, Riyadh 11451 Saudi Arabia ²Atomic Energy Authority, Hot Laboratories Centre, 13759, Egypt

Abstract

Biochar derived from agricultural biomass waste is increasingly recognized as multifunctional material for various applications according its characteristics. It is therefore essential to investigate biochar properties before large-scale application. In this study, rice straw-derived biochars produced at different temperature (550, 650, 750 °C). The resulting biochars were subjected to liquidphase oxidation by different agents including KOH, HNO₃, H₂SO₄, H₂O₂ and KMnO₄ to obtain biochar with different properties. Pore structure characteristics including surface area, micro and meso pore volume, and pore size distribution were studied. Biochar surface is sensitive to the type of modifying reagent. Biochars treated by KOH, KMnO₄ and H₂O₂ give higher nitrogen uptake in the range of micropores and mesopores. The rice straw-derived biochars especially produced at 650°C and treated by KOH have the highest surface area (179.7 m^2/g) and micropore volume (0.081 cc/g) than the rest of biochars. In contrast, biochars treated by H₂SO₄ and HNO₃ give lower nitrogen uptake and lead to loss of the biochars prosity. Loss of micropore volume is as low as 10-40% of pore volume in H₂SO₄ and HNO₃ treated biochars. Biochars exhibit wide pore size distribution, from narrow micropore region. However, for mesopore region, two minima at about 3.0 nm and 5.0 nm were observed. More homogonous micropore distribution was produced from KOH and H₂O₂ treatment in contrast to that of HNO₃ and H₂SO₄ treatment, which give heterogeneous micropore distribution.

Key words: activated biochar, pore size distribution, pore volume, rice straw, surface area

Received: March, 2013; Revised final: April, 2014; Accepted: April, 2014

^{*} Author to whom all correspondence should be addressed: e-mail: sobhy.yakout@gmail.com; Phone: +966558448693; Fax: +96614675931