Environmental Engineering and Management Journal

April 2015, Vol.14, No. 4, 837-842 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of Iasi, Romania

NICKEL (II) REMOVAL FROM INDUSTRIAL PLATING EFFLUENT BY FENTON PROCESS

Mohammad Malakootian¹, Nader Yousefi², Ali Fatehizadeh³, Steven W. Van Ginkel⁴, Mahbobeh Ghorbani¹, Sajad Rahimi⁵, Mohammad Ahmadian^{5*}

¹Environmental Health Engineering Research Center and Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran

²Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
³Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
⁴School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
⁵Social Development & Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Abstract

In this study, the efficiency of Fenton's process to remove nickel (II) from industrial plating effluent was investigated. The effect of pH, contact time, concentrations of Fe²⁺ and H₂O₂ were surveyed. Kinetic experiments were performed in order to predict the nickel (II) removal rate from wastewater. At pH 1 to 4, nickel (II) removal efficiency increased and declined at pH > 4. The maximum nickel (II) removal efficiency was 98% at 60 min contact time, pH: 4, and Fe²⁺ and H₂O₂ concentrations of 1,600 and 2,500 mg/L. First-order kinetic describes nickel (II) removal better than zero- or second-order kinetic models. The results show that Fenton's process is effective in removing nickel (II) from industrial plating effluent below the EPA discharge limit.

Key words: advanced treatment, heavy metal, plating effluent, reaction rate

Received: May, 2011; Revised final: August, 2012; Accepted: September, 2012

^{*} Author to whom all correspondence should be addressed: e-mail: moh.ahmadian@yahoo.com; Phone: 0098 831 4216143, Fax: 0098 831 4239050