Environmental Engineering and Management Journal

August 2015, Vol.14, No. 8, 1917-1922 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of lasi, Romania

STUDY ON THE DAWSONITE - BEARING SANDSTONES REFORMED BY CO₂ FLUID

Xi-Yu Qu^{1*}, Yuan Gao¹, Na Liu², Xiu Chen¹, Li Liu^{2*}

¹China University of Petroleum, Faculty of Earth Sciences & Technology, Qingdao 266580, China ²Jilin University, College of Earth Sciences, Changchun 130061, China

Abstract

Based on the study on the reformation of Dawsonite-bearing sandstones with CO_2 fluids at different temperature (100°C 200°C and 300°C) and different CO_2/H_2O /sandstone systems, it is suggested that as the temperature increases, the corrosion intensity of dawsonite-bearing sandstones is gradually increased, but the stability of the sandstone is reduced. The SEM study shows that there are radiated aggregate sediments of boehmite in all samples. At 200°C, with the dissolving of dawsonite-bearing sandstone, authigenic siderite is produced; at 300°C, chlorite appears on local surface of the samples. As dawsonite-bearing sandstone is moderately dissolved at 100°C and siderite is formed at 200°C, it indicates that even if CO_2 is injected in the system for a second time, the CO_2 captured in the form of carbonate minerals under the stratum condition will not be released.

Key words: CO2, dawsonite-bearing sandstone, hydrothermal experiment, precipitation, solution

Received: November, 2014; Revised final: July, 2015; Accepted: July, 2015

^{*} Authors to whom all correspondence should be addressed: e-mail: quxiyu@upc.edu.cn; liuli0892@vip.sina.com; Phone: +86043188502623; Fax:+860431-88584422