UASB TREATMENT OF FRUIT CANNING WASTEWATER: PILOT-SCALE INVESTIGATIONS

Vasileios Diamantis ${ }^{1 *}$, Eleni Pavlidou ${ }^{2}$, Alexandros Aivazidis ${ }^{1}$
${ }^{1}$ Laboratory for Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, GR-67100, Xanthi, Greece.
${ }^{2}$ Laboratory of Scanning Microscope, Department of Physics, Aristotle University of Thessalonica, GR-54 124, Thessalonica.

Abstract

A 6.5 L Upflow Anaerobic Sludge Bed (UASB) reactor was operated with an industrial fruit canning wastewater of fluctuating strength and characteristics ($\mathrm{pH}=4-10$, COD total $=940-5080 \mathrm{mg} / \mathrm{L}, \mathrm{COD}$ soluble $=890-3900 \mathrm{mg} / \mathrm{L}$) at 25-36 ${ }^{\circ} \mathrm{C}$. The UASB reactor operated successfully at Hydraulic Residence Times (HRT) of 6-12 h and Organic Loading Rates (L_{RS}) between $4-16 \mathrm{~kg} /\left(\mathrm{m}^{3} \mathrm{~d}\right)$. Reactor start-up was performed within $2-3$ d after seeding with granular sludge from an Expanded Granular Sludge Bed (EGSB) reactor. Effluent COD was constantly below $800 \mathrm{mg} / \mathrm{L}$ and correspondingly COD removal efficiency higher than 75 \%. An increase in effluent COD was observed when the reactor was re-started after short term starvation (1-3 d) at high Organic Loading Rate $\left[10-12 \mathrm{~kg} /\left(\mathrm{m}^{3} \mathrm{~d}\right)\right]$. Biogas and methane selectivity were $0.37 \mathrm{~L} / \mathrm{g}_{\mathrm{codr}}$ and 0.24 $\mathrm{L}_{\mathrm{CH} 4} / \mathrm{g}_{\mathrm{CODr}}$ respectively. The UASB reactor proved to be an interesting option for the pre-treatment of wastewater from the fruit canning industry.

Keywords: anaerobic wastewater treatment, fruit canning industry, UASB, granular sludge, complex wastewater

[^0]
[^0]: * Author to whom all correspondence should be addressed: e-mail: bdiamant@env.duth.gr, Tel./Fax: +30 2541079376

