

"Gheorghe Asachi" Technical University of Iasi, Romania

DECONTAMINATE EFFECT OF THE FUNCTIONALIZED MATERIALS WITH UNDOPED AND DOPED (Ag) TiO₂ NANOCRYSTALS

Cornelia Ratiu^{1*}, Carmen Lazau¹, Paula Sfirloaga¹, Corina Orha¹, Daniela Sonea², Stefan Novaconi¹, Florica Manea², Georgeta Burtica², Ioan Grozescu¹

¹ National Institute for Research&Development in Electrochemistry and Condensed Matter, 1 Plautius Andronescu Street, 300224 Timisoara, Romania

² "Politehnica" University of Timisoara, 2 Victoriei Street, 300006 Timisoara, Romania

Abstract

This paper presents the preliminary results of photocatalytic oxidation of humic acid from water using two types of catalysts, i.e., TiO_2 and Ag-doped TiO_2 modified zeolite (TMZ and Ag-TMZ). TMZ and Ag-TMZ, with zeolite granulation of 315-500 μ m was synthesized by sol-gel method, and the morphology and composition of the unmodified/modified zeolite were characterized by BET (Brunauer–Emmet–Teller) method, X-ray Diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX). The sorption process played a major role in photoxidation process, and a slight higher photodegradation rate of humic acid from water was obtained for TiO_2 modified zeolite. The photodegradation process of humic acid from water by using catalysts of TiO_2 and Ag-doped TiO_2 led to a complete mineralization.

Key words: Ag-doped TiO2-modified zeolite, humic acid removal, photocatalytic oxidation process, TiO2-modified zeolite

⁻

^{*} Author to whom all correspondence should be addressed: e-mail: cornelia_ratiu@icmct.uvt.ro, Phone: 0040-256-494413, Fax: 0040-256-204698