

"Gheorghe Asachi" Technical University of Iasi, Romania

IRON OXIDES FROM ELECTROFILTER ASH FOR WATER TREATMENT (ARSENIC REMOVAL)

Ionel Balcu^{1*}, Adina Segneanu¹, Marius Mirica¹, Mirela Iorga¹, Catalin Badea², Iuliana Firuta Fitigau¹

¹National Institute of R&D for Electrochemistry and Condensed Matter – INCEMC, 144 Aurel Paunescu Podeanu, 300569 Timisoara, Romania ²"Politehnica" University of Timisoara, 2 Piata Victoriei, Timisoara – Romania

Abstract

Arsenic (As)-contaminated drinking water is a major problem around the world. The removal efficiency depends strongly on the size of Fe_3O_4 sorbents. Fe_3O_4 prepared in laboratory is more efficient in the removal of As and is also more easily recovered from column of magnetic separator than the commercial materials. This would be beneficial in a water treatment system because the As-contaminated Fe_3O_4 could be flushed from the column permitting reuse of the separator system. The dispersed Fe_3O_4 nanocrystals can be removed from the solution through interactions with a magnetic column. The 20 nm commercially made nanocrystals were permanently retained in the column and could not be recovered, while the laboratory prepared nanocrystals were able to be recovered when the magnetic field was turned off.

Key words: absorption spectrometer, arsenic removal, iron oxides

_

^{*} Author to whom all correspondence should be addressed: e-mil: ionel_balcu@yahoo.com; Phone: +40752197758